Markov Random Fields in Statistics
نویسنده
چکیده
منابع مشابه
Think continuous: Markovian Gaussian models in spatial statistics
Gaussian Markov random fields (GMRFs) are frequently used as computationally efficient models in spatial statistics. Unfortunately, it has traditionally been difficult to link GMRFs with the more traditional Gaussian random field models as the Markov property is difficult to deploy in continuous space. Following the pioneering work of Lindgren et al. (2011), we expound on the link between Marko...
متن کاملAdaptive ABC model choice and geometric summary statistics for hidden Gibbs random fields
Selecting between different dependency structures of hidden Markov random field can be very challenging, due to the intractable normalizing constant in the likelihood. We answer this question with approximate Bayesian computation (ABC) which provides a model choice method in the Bayesian paradigm. This comes after the work of Grelaud et al. (2009) who exhibited sufficient statistics on directly...
متن کاملNorges Teknisk-naturvitenskapelige Universitet Fitting Gaussian Markov Random Fields to Gaussian Fields Fitting Gaussian Markov Random Fields to Gaussian Fields Tmr Project on Spatial Statistics (erb-fmrx-ct960095) for Support and Inspiration
SUMMARY This paper discusses the following task often encountered building Bayesian spatial models: construct a homogeneous Gaussian Markov random field (GMRF) on a lattice with correlation properties either as present in observed data or consistent with prior knowledge. The Markov property is essential in design of computational efficient Markov chain Monte Carlo algorithms used to analyse suc...
متن کاملLinear and Parallel Learning of Markov Random Fields
We introduce a new embarrassingly parallel parameter learning algorithm for Markov random fields which is efficient for a large class of practical models. Our algorithm parallelizes naturally over cliques and, for graphs of bounded degree, its complexity is linear in the number of cliques. Unlike its competitors, our algorithm is fully parallel and for log-linear models it is also data efficien...
متن کاملPoisson / gamma random field models for spatial statistics
Doubly stochastic Bayesian hierarchical models are introduced to account for uncertainty and spatial variation in the underlying intensity measure for point process models. Inhomogeneous gamma process random fields and, more generally, Markov random fields with infinitely divisible distributions are used to construct positively autocorrelated intensity measures for spatial Poisson point process...
متن کامل